Built with Altera Corporation Deep Research technology
This documentation explains how to use the Deep Research API for structured,
analytical research tasks.
All input parameters are passed via query string for GET requests or body JSON for POST requests.
Parameter | Type | Description | Default |
---|---|---|---|
prompt | string | The main research query or text input for the deep research model | required |
key | string | Your access key for authentication | required |
openai_api_key | string | Your OpenAI API key (optional). If provided, this key will be used instead of the server's default key | null |
model | string | Which deep research model to use | o4-mini-deep-research |
background | boolean | If true, the research will run in background mode | false |
autopoll | boolean | If true and background=true, the server will poll until job complete | false |
pollintervalms | number | Milliseconds between polling attempts in background mode | 3000 |
enable_code_interpreter | boolean | Enable the code interpreter tool for analytical tasks | false |
max_tool_calls | number | Maximum number of tool calls allowed | unlimited |
vector_store_ids | array | Array of vector store ids for private data searches | null |
extratools | array | Array of extra tool configurations | [] |
instructions | string | Optional instructions for the model | default research instructions |
If no instructions are provided, the following structured prompt is used:
Use the deep research model to produce a structured, auditable research report.
Output structure:
1) Executive summary (≤ 250 words)
2) Brief methodology (tools used: web_search/file_search/code_interpreter)
3) Key findings — include figures, trends, and measurable metrics
4) Analysis and interpretation (data-backed reasoning)
5) Practical implications and recommendations
6) Sources with full metadata (title, url, publish date, source type)
Requirements:
- Prioritize high-quality sources (peer-reviewed journals, reputable agencies)
- Include inline citations for non-opinion claims and return source metadata
- Avoid exposing or transmitting personal/sensitive data
- If using private data, only query trusted stores/servers
- If assumptions are made, list them and note limitations
- Be analytical and avoid unsupported generalities
const axios = require('axios');
async function runResearch() {
const response = await axios.post('https://altera-api.vercel.app/api/deep-research', {
prompt: 'Research the economic impact of semaglutide on global healthcare systems.',
key: 'A-CORE',
openai_api_key: 'sk-your-openai-key-here',
background: true,
autopoll: true,
enable_code_interpreter: true,
max_tool_calls: 50,
vector_store_ids: ['vs_68870b8868b88191894165101435eef6']
});
console.log(response.data);
}
runResearch();
https://altera-api.vercel.app/api/deep-research?prompt=research+semaglutide&key=A-CORE&openai_api_key=sk-your-key
o4-mini-deep-research
— High-level research model, faster, optimized for multi-step
analysiso3-deep-research
— Classic deep research model, thorough and analyticalvector_store_ids
only for trusted datainstructions
to guide research style or report structureopenai_api_key
to use your own OpenAI creditsThe API returns a JSON object with success: false
and an error
message
in case of issues:
{
"success": false,
"error": "Polling timeout — job not completed in time."
}
allowedApiKeys