Deep Research API Documentation

Built with Altera Corporation Deep Research technology
This documentation explains how to use the Deep Research API for structured, analytical research tasks.

Parameters

All input parameters are passed via query string for GET requests or body JSON for POST requests.

Parameter Type Description Default
prompt string The main research query or text input for the deep research model required
key string Your access key for authentication required
openai_api_key string Your OpenAI API key (optional). If provided, this key will be used instead of the server's default key null
model string Which deep research model to use o4-mini-deep-research
background boolean If true, the research will run in background mode false
autopoll boolean If true and background=true, the server will poll until job complete false
pollintervalms number Milliseconds between polling attempts in background mode 3000
enable_code_interpreter boolean Enable the code interpreter tool for analytical tasks false
max_tool_calls number Maximum number of tool calls allowed unlimited
vector_store_ids array Array of vector store ids for private data searches null
extratools array Array of extra tool configurations []
instructions string Optional instructions for the model default research instructions

Default Instructions

If no instructions are provided, the following structured prompt is used:


Use the deep research model to produce a structured, auditable research report.

Output structure:
1) Executive summary (≤ 250 words)
2) Brief methodology (tools used: web_search/file_search/code_interpreter)
3) Key findings — include figures, trends, and measurable metrics
4) Analysis and interpretation (data-backed reasoning)
5) Practical implications and recommendations
6) Sources with full metadata (title, url, publish date, source type)

Requirements:
- Prioritize high-quality sources (peer-reviewed journals, reputable agencies)
- Include inline citations for non-opinion claims and return source metadata
- Avoid exposing or transmitting personal/sensitive data
- If using private data, only query trusted stores/servers
- If assumptions are made, list them and note limitations
- Be analytical and avoid unsupported generalities

Example Usage (Node.js)


const axios = require('axios');

async function runResearch() {
  const response = await axios.post('https://altera-api.vercel.app/api/deep-research', {
    prompt: 'Research the economic impact of semaglutide on global healthcare systems.',
    key: 'A-CORE',
    openai_api_key: 'sk-your-openai-key-here',
    background: true,
    autopoll: true,
    enable_code_interpreter: true,
    max_tool_calls: 50,
    vector_store_ids: ['vs_68870b8868b88191894165101435eef6']
  });

  console.log(response.data);
}

runResearch();

Or using GET request:

https://altera-api.vercel.app/api/deep-research?prompt=research+semaglutide&key=A-CORE&openai_api_key=sk-your-key

Models Available

Tools

Best Practices

Error Handling

The API returns a JSON object with success: false and an error message in case of issues:


{
  "success": false,
  "error": "Polling timeout — job not completed in time."
}

Security Notes